

Welcome to Flask-MQTT’s documentation!

Flask-MQTT is a Flask [http://flask.pocoo.org/] extension meant to facilitate
the integration of a MQTT client into your web application. Basically it is a
thin wrapper around the paho-mqtt [https://github.com/eclipse/paho.mqtt.python] package to simplify MQTT integration in
a Flask application.
MQTT [http://mqtt.org/] is a machine-to-machine (M2M)/”Internet of Things”
(IoT) protocol which is designed as a lightweight publish/subscribe messaging
transport. It comes very handy when trying to connect multiple IoT devices with each other
or monitor and control these devices from one or multiple clients.

Limitations

Multiple workers

Flask-MQTT is currently not suitable for the use with multiple worker
instances. So if you use a WSGI server like gevent or gunicorn make sure
you only have one worker instance.

Flask-MQTT was developed to provide an easy-to-setup solution for interacting
with IoT devices. A typical scenario would be a Raspberry Pi running a
mosquitto mqtt server combined with a Flask webserver.

Reloader

Make sure to disable Flasks autoreloader. If activated it spawns two
instances of a Flask application. This leads to the same problems as multiple
workers. To prevent Flask-MQTT from running code twice it is necessary to
deactivate the automatic reloader.

Type annotations

This package uses type annotations so it needs Python 3.6 or Python 2.7/3.x
with the typing package [https://pypi.python.org/pypi/typing] installed.

Content

	Configuration
	Configuration Keys

	Usage
	Connect to a broker

	Configure the MQTT client

	Subscribe to a topic

	Publish a message

	Logging

	Interact with SocketIO

	Testing

	API Documentation

Indices and tables

	Index

	Module Index

	Search Page

Configuration

The following configuration keys exist for Flask-MQTT. Flask-MQTT loads these
values from your main Flask config.

Configuration Keys

	MQTT_CLIENT_ID

	the unique client id string used when connecting
to the broker. If client_id is zero length or
None, then one will be randomly generated.

	MQTT_BROKER_URL

	The broker URL that should be used for the
connection. Defaults to localhost. Example:

	mybroker.com

	MQTT_BROKER_PORT

	The broker port that should be used for the
connection. Defaults to 1883.

	MQTT: 1883

	MQTT encrypted (SSL): 8883

	MQTT_USERNAME

	The username used for authentication. If none is
provided authentication is disabled. Defaults to
None.

	MQTT_PASSWORD

	The password used for authentication. Defaults
to None. Only needed if a username is
provided.

	MQTT_KEEPALIVE

	Maximum period in seconds between communications
with the broker. If no other messages are being
exchanged, this controls the rate at which the
client will send ping messages to the broker.
Defaults to 60 seconds.

	MQTT_TLS_ENABLED

	Enable TLS for the connection to the MQTT broker.
Use the following config keys to configure TLS.

	MQTT_TLS_CA_CERTS

	A string path to the Certificate Authority
certificate files that are to be treated as
trusted by this client. Required.

	MQTT_TLS_CERTFILE

	String pointing to the PEM encoded client
certificate. Defaults to None.

	MQTT_TLS_KEYFILE

	String pointing to the PEM encoded client
private key. Defaults to None.

	MQTT_TLS_CERT_REQS

	Defines the certificate requirements that the
client imposes on the broker. By default this
is ssl.CERT_REQUIRED, which means that the
broker must provide a certificate. See the
ssl pydoc for more information on this
parameter. Defaults to ssl.CERT_REQUIRED.

	MQTT_TLS_VERSION

	Specifies the version of the SSL/TLS protocol
to be used. By default TLS v1 is used.
Previous versions (all versions beginning with
SSL) are possible but not recommended due to
possible security problems.
Defaults to ssl.PROTOCOL_TLSv1.

	MQTT_TLS_CIPHERS

	A string specifying which encryption ciphers
are allowable for this connection, or None
to use the defaults. See the ssl pydoc for
more information. Defaults to None.

	MQTT_TLS_INSECURE

	Configure verification of the server hostname
in the server certificate. Defaults to False.
Do not use this function in a real system.
Setting value to True means there is no
point using encryption.

	MQTT_LAST_WILL_TOPIC

	The topic that the will message should be
published on. If not set no will message will
be sent on disconnecting the client.

	MQTT_LAST_WILL_MESSAGE

	The message to send as a will. If not given, or
set to None a zero length message will be used
as the will. Passing an int or float will result
in the payload being converted to a string
representing that number. If you wish to send
a true int/float, use struct.pack() to
create the payload you require.

	MQTT_LAST_WILL_QOS

	The quality of service level to use for the will.
Defaults to 0.

	MQTT_LAST_WILL_RETAIN

	If set to true, the will message will be set
as the “last known good”/retained message for
the topic. Defaults to False.

	MQTT_TRANSPORT

	set to “websockets” to send MQTT over
WebSockets. Leave at the default of “tcp” to
use raw TCP.

	MQTT_PROTOCOL_VERSION

	The version of the MQTT protocol to use. Can be
either MQTTv31 or MQTTv311 (default).

Usage

Connect to a broker

To connect to a broker you only need to initialize the Flask-MQTT extension
with your Flask application. You can do this by directly passing the Flask
application object [http://flask.pocoo.org/docs/0.12/api/#application-object] on object creation.

from flask import Flask
from flask_mqtt import Mqtt

app = Flask(__name__)
mqtt = Mqtt(app)

The Flask-MQTT extension supports the factory pattern so you can instantiate
a Mqtt object without an app object. Use the init_app() function inside
the factory function for initialization.

from flask import Flask
from flask_mqtt import Mqtt

mqtt = Mqtt()

def create_app():
 app = Flask(__name__)
 mqtt.init_app(app)

Configure the MQTT client

The configuration of the MQTT client is done via configuration variables as
it is common for Flask extension.

from flask import Flask
from flask_mqtt import Mqtt

app = Flask(__name__)
app.config['MQTT_BROKER_URL'] = 'broker.hivemq.com' # use the free broker from HIVEMQ
app.config['MQTT_BROKER_PORT'] = 1883 # default port for non-tls connection
app.config['MQTT_USERNAME'] = '' # set the username here if you need authentication for the broker
app.config['MQTT_PASSWORD'] = '' # set the password here if the broker demands authentication
app.config['MQTT_KEEPALIVE'] = 5 # set the time interval for sending a ping to the broker to 5 seconds
app.config['MQTT_TLS_ENABLED'] = False # set TLS to disabled for testing purposes

mqtt = Mqtt()

All available configuration variables are listed in the configuration section.

Subscribe to a topic

To subscribe to a topic simply use flask_mqtt.Mqtt.subscribe().

mqtt.subscribe('home/mytopic')

If you want to subscribe to a topic right from the start make sure to wait with
the subscription until the client is connected to the broker. Use the
flask_mqtt.Mqtt.on_connect() decorator for this.

@mqtt.on_connect()
def handle_connect(client, userdata, flags, rc):
 mqtt.subscribe('home/mytopic')

To handle the subscribed messages you can define a handling function by
using the flask_mqtt.Mqtt.on_message() decorator.

@mqtt.on_message()
def handle_mqtt_message(client, userdata, message):
 data = dict(
 topic=message.topic,
 payload=message.payload.decode()
)

To unsubscribe use flask_mqtt.Mqtt.unsubscribe().

mqtt.unsubscribe('home/mytopic')

Or if you want to unsubscribe all topics use
flask_mqtt.Mqtt.unsubscribe_all().

mqtt.unsubscribe_all()

Publish a message

Publishing a message is easy. Just use the flask_mqtt.Mqtt.publish()
method here.

mqtt.publish('home/mytopic', 'hello world')

Logging

To enable logging there exists the flask_mqtt.Mqtt.on_log() decorator.
The level variable gives the severity of the message and will be one of these:

	flask_mqtt.MQTT_LOG_INFO

	0x01

	flask_mqtt.MQTT_LOG_NOTICE

	0x02

	flask_mqtt.MQTT_LOG_WARNING

	0x04

	flask_mqtt.MQTT_LOG_ERR

	0x08

	flask_mqtt.MQTT_LOG_DEBUG

	0x10

@mqtt.on_log()
def handle_logging(client, userdata, level, buf):
 if level == MQTT_LOG_ERR:
 print('Error: {}'.format(buf))

Interact with SocketIO

Flask-MQTT plays nicely with the Flask-SocketIO [https://flask-socketio.readthedocs.io/en/latest/] extension. Flask-SocketIO
gives Flask applications access to low latency bi-directional communications
between the clients and the server. So it is ideal for displaying live data,
state changes or alarms that get in via MQTT. Have a look at the example to
see Flask-MQTT and Flask-SocketIO play together. The example provides a small
publish/subscribe client using Flask-SocketIO to insantly show subscribed
messages and publish messages.

"""

A small Test application to show how to use Flask-MQTT.

"""

import eventlet
import json
from flask import Flask, render_template
from flask_mqtt import Mqtt
from flask_socketio import SocketIO
from flask_bootstrap import Bootstrap

eventlet.monkey_patch()

app = Flask(__name__)
app.config['SECRET'] = 'my secret key'
app.config['TEMPLATES_AUTO_RELOAD'] = True
app.config['MQTT_BROKER_URL'] = 'broker.hivemq.com'
app.config['MQTT_BROKER_PORT'] = 1883
app.config['MQTT_USERNAME'] = ''
app.config['MQTT_PASSWORD'] = ''
app.config['MQTT_KEEPALIVE'] = 5
app.config['MQTT_TLS_ENABLED'] = False

Parameters for SSL enabled
app.config['MQTT_BROKER_PORT'] = 8883
app.config['MQTT_TLS_ENABLED'] = True
app.config['MQTT_TLS_INSECURE'] = True
app.config['MQTT_TLS_CA_CERTS'] = 'ca.crt'

mqtt = Mqtt(app)
socketio = SocketIO(app)
bootstrap = Bootstrap(app)

@app.route('/')
def index():
 return render_template('index.html')

@socketio.on('publish')
def handle_publish(json_str):
 data = json.loads(json_str)
 mqtt.publish(data['topic'], data['message'])

@socketio.on('subscribe')
def handle_subscribe(json_str):
 data = json.loads(json_str)
 mqtt.subscribe(data['topic'])

@socketio.on('unsubscribe_all')
def handle_unsubscribe_all():
 mqtt.unsubscribe_all()

@mqtt.on_message()
def handle_mqtt_message(client, userdata, message):
 data = dict(
 topic=message.topic,
 payload=message.payload.decode()
)
 socketio.emit('mqtt_message', data=data)

@mqtt.on_log()
def handle_logging(client, userdata, level, buf):
 print(level, buf)

if __name__ == '__main__':
 socketio.run(app, host='0.0.0.0', port=5000, use_reloader=False, debug=True)

Testing

For testing use the command setup.py test. You will need a broker like
mosquitto running on your localhost, port 1883 to run the integration tests.

API Documentation

Flask-MQTT Package.

	author

	Stefan Lehmann <stlm@posteo.de>

	license

	MIT, see license file or https://opensource.org/licenses/MIT

	
class flask_mqtt.Mqtt(app: flask.app.Flask = None, connect_async: bool = False, mqtt_logging: bool = False, config_prefix: str = 'MQTT')

	Bases: object

Main Mqtt class.

	Parameters

	
	app – flask application object

	connect_async – if True then connect_aync will be used to connect to MQTT broker

	mqtt_logging – if True then messages from MQTT client will be logged

	
init_app(app: flask.app.Flask, config_prefix: str = 'MQTT') → None

	Init the Flask-MQTT addon.

	
on_connect() → Callable

	Decorator.

Decorator to handle the event when the broker responds to a connection
request. Only the last decorated function will be called.

	
on_disconnect() → Callable

	Decorator.

Decorator to handle the event when client disconnects from broker. Only
the last decorated function will be called.

	
on_log() → Callable

	Decorate a callback function to handle MQTT logging.

Example Usage:

@mqtt.on_log()
def handle_logging(client, userdata, level, buf):
 print(client, userdata, level, buf)

	
on_message() → Callable

	Decorator.

Decorator to handle all messages that have been subscribed and that
are not handled via the on_message decorator.

Note: Unlike as written in the paho mqtt documentation this
callback will not be called if there exists an topic-specific callback
added by the on_topic decorator.

Example Usage::

@mqtt.on_message()
def handle_messages(client, userdata, message):
 print('Received message on topic {}: {}'
 .format(message.topic, message.payload.decode()))

	
on_publish() → Callable

	Decorator.

Decorator to handle all messages that have been published by the
client.

Example Usage::

@mqtt.on_publish()
def handle_publish(client, userdata, mid):
 print('Published message with mid {}.'
 .format(mid))

	
on_subscribe() → Callable

	Decorate a callback function to handle subscritions.

Usage::

@mqtt.on_subscribe()
def handle_subscribe(client, userdata, mid, granted_qos):
 print('Subscription id {} granted with qos {}.'
 .format(mid, granted_qos))

	
on_topic(topic: str) → Callable

	Decorator.

Decorator to add a callback function that is called when a certain
topic has been published. The callback function is expected to have the
following form: handle_topic(client, userdata, message)

	Parameters

	topic – a string specifying the subscription topic to
subscribe to

The topic still needs to be subscribed via mqtt.subscribe() before the
callback function can be used to handle a certain topic. This way it is
possible to subscribe and unsubscribe during runtime.

Example usage::

app = Flask(__name__)
mqtt = Mqtt(app)
mqtt.subscribe('home/mytopic')

@mqtt.on_topic('home/mytopic')
def handle_mytopic(client, userdata, message):
 print('Received message on topic {}: {}'
 .format(message.topic, message.payload.decode()))

	
on_unsubscribe() → Callable

	Decorate a callback funtion to handle unsubscribtions.

Usage::

@mqtt.unsubscribe()
def handle_unsubscribe(client, userdata, mid)
 print('Unsubscribed from topic (id: {})'
 .format(mid)')

	
publish(topic: str, payload: Optional[bytes] = None, qos: int = 0, retain: bool = False) → Tuple[int, int]

	Send a message to the broker.

	Parameters

	
	topic – the topic that the message should be published on

	payload – the actual message to send. If not given, or set to
None a zero length message will be used. Passing an
int or float will result in the payload being
converted to a string representing that number.
If you wish to send a true int/float, use struct.pack()
to create the payload you require.

	qos – the quality of service level to use

	retain – if set to True, the message will be set as the
“last known good”/retained message for the topic

	Returns

	Returns a tuple (result, mid), where result is
MQTT_ERR_SUCCESS to indicate success or MQTT_ERR_NO_CONN
if the client is not currently connected. mid is the message
ID for the publish request.

	
subscribe(topic, qos: int = 0) → Tuple[int, int]

	Subscribe to a certain topic.

	Parameters

	
	topic – a string specifying the subscription topic to
subscribe to.

	qos – the desired quality of service level for the subscription.
Defaults to 0.

	Return type

	(int, int)

	Result

	(result, mid)

A topic is a UTF-8 string, which is used by the broker to filter
messages for each connected client. A topic consists of one or more
topic levels. Each topic level is separated by a forward slash
(topic level separator).

The function returns a tuple (result, mid), where result is
MQTT_ERR_SUCCESS to indicate success or (MQTT_ERR_NO_CONN, None) if the
client is not currently connected. mid is the message ID for the
subscribe request. The mid value can be used to track the subscribe
request by checking against the mid argument in the on_subscribe()
callback if it is defined.

Topic example: myhome/groundfloor/livingroom/temperature

	
unsubscribe(topic: str) → Optional[Tuple[int, int]]

	Unsubscribe from a single topic.

	Parameters

	topic – a single string that is the subscription topic to
unsubscribe from

	Return type

	(int, int)

	Result

	(result, mid)

Returns a tuple (result, mid), where result is MQTT_ERR_SUCCESS
to indicate success or (MQTT_ERR_NO_CONN, None) if the client is not
currently connected.
mid is the message ID for the unsubscribe request. The mid value can be
used to track the unsubscribe request by checking against the mid
argument in the on_unsubscribe() callback if it is defined.

	
unsubscribe_all() → None

	Unsubscribe from all topics.

Returns True if all topics are unsubscribed from self.topics, otherwise False

	
class flask_mqtt.TopicQos(topic, qos)

	Bases: tuple

Container for topic + qos

	
qos

	Alias for field number 1

	
topic

	Alias for field number 0

 Python Module Index

 f

 		 	

 		
 f	

 	
 	
 flask_mqtt	

Index

 F
 | I
 | M
 | O
 | P
 | Q
 | S
 | T
 | U

F

 	
 	flask_mqtt (module)

I

 	
 	init_app() (flask_mqtt.Mqtt method)

M

 	
 	Mqtt (class in flask_mqtt)

O

 	
 	on_connect() (flask_mqtt.Mqtt method)

 	on_disconnect() (flask_mqtt.Mqtt method)

 	on_log() (flask_mqtt.Mqtt method)

 	on_message() (flask_mqtt.Mqtt method)

 	
 	on_publish() (flask_mqtt.Mqtt method)

 	on_subscribe() (flask_mqtt.Mqtt method)

 	on_topic() (flask_mqtt.Mqtt method)

 	on_unsubscribe() (flask_mqtt.Mqtt method)

P

 	
 	publish() (flask_mqtt.Mqtt method)

Q

 	
 	qos (flask_mqtt.TopicQos attribute)

S

 	
 	subscribe() (flask_mqtt.Mqtt method)

T

 	
 	topic (flask_mqtt.TopicQos attribute)

 	
 	TopicQos (class in flask_mqtt)

U

 	
 	unsubscribe() (flask_mqtt.Mqtt method)

 	
 	unsubscribe_all() (flask_mqtt.Mqtt method)

 nav.xhtml

 Table of Contents

 		
 Welcome to Flask-MQTT’s documentation!

 		
 Configuration

 		
 Configuration Keys

 		
 Usage

 		
 Connect to a broker

 		
 Configure the MQTT client

 		
 Subscribe to a topic

 		
 Publish a message

 		
 Logging

 		
 Interact with SocketIO

 		
 Testing

 		
 API Documentation

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

