
Flask-MQTT Documentation
Release 1.1.1

Stefan Lehmann

May 04, 2023

Contents

1 Limitations 3
1.1 Multiple workers . 3
1.2 Reloader . 3
1.3 Type annotations . 3

2 Content 5
2.1 Configuration . 5
2.2 Usage . 8
2.3 Testing . 11
2.4 API Documentation . 11

3 Indices and tables 15

Python Module Index 17

Index 19

i

ii

Flask-MQTT Documentation, Release 1.1.1

Flask-MQTT is a Flask extension meant to facilitate the integration of a MQTT client into your web application.
Basically it is a thin wrapper around the paho-mqtt package to simplify MQTT integration in a Flask application.
MQTT is a machine-to-machine (M2M)/”Internet of Things” (IoT) protocol which is designed as a lightweight pub-
lish/subscribe messaging transport. It comes very handy when trying to connect multiple IoT devices with each other
or monitor and control these devices from one or multiple clients.

Contents 1

http://flask.pocoo.org/
https://github.com/eclipse/paho.mqtt.python
http://mqtt.org/

Flask-MQTT Documentation, Release 1.1.1

2 Contents

CHAPTER 1

Limitations

1.1 Multiple workers

Flask-MQTT is currently not suitable for the use with multiple worker instances. So if you use a WSGI server
like gevent or gunicorn make sure you only have one worker instance.

Flask-MQTT was developed to provide an easy-to-setup solution for interacting with IoT devices. A typical scenario
would be a Raspberry Pi running a mosquitto mqtt server combined with a Flask webserver.

1.2 Reloader

Make sure to disable Flasks autoreloader. If activated it spawns two instances of a Flask application. This leads to the
same problems as multiple workers. To prevent Flask-MQTT from running code twice it is necessary to deactivate the
automatic reloader.

1.3 Type annotations

This package uses type annotations so it needs Python 3.6 or Python 2.7/3.x with the typing package installed.

3

https://pypi.python.org/pypi/typing

Flask-MQTT Documentation, Release 1.1.1

4 Chapter 1. Limitations

CHAPTER 2

Content

2.1 Configuration

The following configuration keys exist for Flask-MQTT. Flask-MQTT loads these values from your main Flask config.

5

Flask-MQTT Documentation, Release 1.1.1

6 Chapter 2. Content

Flask-MQTT Documentation, Release 1.1.1

2.1.1 Configuration Keys

MQTT_CLIENT_ID the unique client id string used when connecting to the bro-
ker. If client_id is zero length or None, then one will be
randomly generated.

MQTT_BROKER_URL The broker URL that should be used for the connection. De-
faults to localhost. Example:

• mybroker.com

MQTT_BROKER_PORT The broker port that should be used for the connection. De-
faults to 1883.

• MQTT: 1883
• MQTT encrypted (SSL): 8883

MQTT_USERNAME The username used for authentication. If none is provided
authentication is disabled. Defaults to None.

MQTT_PASSWORD The password used for authentication. Defaults to None.
Only needed if a username is provided.

MQTT_KEEPALIVE Maximum period in seconds between communications with
the broker. If no other messages are being exchanged, this
controls the rate at which the client will send ping messages
to the broker. Defaults to 60 seconds.

MQTT_TLS_ENABLED Enable TLS for the connection to the MQTT broker. Use the
following config keys to configure TLS.

MQTT_TLS_CA_CERTS A string path to the Certificate Authority certificate files that
are to be treated as trusted by this client. Required.

MQTT_TLS_CERTFILE String pointing to the PEM encoded client certificate. De-
faults to None.

MQTT_TLS_KEYFILE String pointing to the PEM encoded client private key. De-
faults to None.

MQTT_TLS_CERT_REQS Defines the certificate requirements that the client imposes on
the broker. By default this is ssl.CERT_REQUIRED, which
means that the broker must provide a certificate. See the ssl
pydoc for more information on this parameter. Defaults to
ssl.CERT_REQUIRED.

MQTT_TLS_VERSION Specifies the version of the SSL/TLS protocol to be used.
By default TLS v1 is used. Previous versions (all ver-
sions beginning with SSL) are possible but not recom-
mended due to possible security problems. Defaults to
ssl.PROTOCOL_TLSv1.

MQTT_TLS_CIPHERS A string specifying which encryption ciphers are allowable
for this connection, or None to use the defaults. See the ssl
pydoc for more information. Defaults to None.

MQTT_TLS_INSECURE Configure verification of the server hostname in the server
certificate. Defaults to False. Do not use this function in a
real system. Setting value to True means there is no point
using encryption.

MQTT_LAST_WILL_TOPIC The topic that the will message should be published on. If not
set no will message will be sent on disconnecting the client.

MQTT_LAST_WILL_MESSAGE The message to send as a will. If not given, or set to None a
zero length message will be used as the will. Passing an int
or float will result in the payload being converted to a string
representing that number. If you wish to send a true int/float,
use struct.pack() to create the payload you require.

MQTT_LAST_WILL_QOS The quality of service level to use for the will. Defaults to 0.
MQTT_LAST_WILL_RETAIN If set to true, the will message will be set as the “last known

good”/retained message for the topic. Defaults to False.
MQTT_TRANSPORT set to “websockets” to send MQTT over WebSockets. Leave

at the default of “tcp” to use raw TCP.
MQTT_PROTOCOL_VERSION The version of the MQTT protocol to use. Can be either

MQTTv31 or MQTTv311 (default).

2.1. Configuration 7

Flask-MQTT Documentation, Release 1.1.1

2.2 Usage

2.2.1 Connect to a broker

To connect to a broker you only need to initialize the Flask-MQTT extension with your Flask application. You can do
this by directly passing the Flask application object on object creation.

from flask import Flask
from flask_mqtt import Mqtt

app = Flask(__name__)
mqtt = Mqtt(app)

The Flask-MQTT extension supports the factory pattern so you can instantiate a Mqtt object without an app object.
Use the init_app() function inside the factory function for initialization.

from flask import Flask
from flask_mqtt import Mqtt

mqtt = Mqtt()

def create_app():
app = Flask(__name__)
mqtt.init_app(app)

2.2.2 Configure the MQTT client

The configuration of the MQTT client is done via configuration variables as it is common for Flask extension.

from flask import Flask
from flask_mqtt import Mqtt

app = Flask(__name__)
app.config['MQTT_BROKER_URL'] = 'broker.hivemq.com' # use the free broker from HIVEMQ
app.config['MQTT_BROKER_PORT'] = 1883 # default port for non-tls connection
app.config['MQTT_USERNAME'] = '' # set the username here if you need authentication
→˓for the broker
app.config['MQTT_PASSWORD'] = '' # set the password here if the broker demands
→˓authentication
app.config['MQTT_KEEPALIVE'] = 5 # set the time interval for sending a ping to the
→˓broker to 5 seconds
app.config['MQTT_TLS_ENABLED'] = False # set TLS to disabled for testing purposes

mqtt = Mqtt()

All available configuration variables are listed in the configuration section.

2.2.3 Subscribe to a topic

To subscribe to a topic simply use flask_mqtt.Mqtt.subscribe().

mqtt.subscribe('home/mytopic')

8 Chapter 2. Content

http://flask.pocoo.org/docs/0.12/api/#application-object

Flask-MQTT Documentation, Release 1.1.1

If you want to subscribe to a topic right from the start make sure to wait with the subscription until the client is
connected to the broker. Use the flask_mqtt.Mqtt.on_connect() decorator for this.

@mqtt.on_connect()
def handle_connect(client, userdata, flags, rc):

mqtt.subscribe('home/mytopic')

To handle the subscribed messages you can define a handling function by using the flask_mqtt.Mqtt.
on_message() decorator.

@mqtt.on_message()
def handle_mqtt_message(client, userdata, message):

data = dict(
topic=message.topic,
payload=message.payload.decode()

)

To unsubscribe use flask_mqtt.Mqtt.unsubscribe().

mqtt.unsubscribe('home/mytopic')

Or if you want to unsubscribe all topics use flask_mqtt.Mqtt.unsubscribe_all().

mqtt.unsubscribe_all()

2.2.4 Publish a message

Publishing a message is easy. Just use the flask_mqtt.Mqtt.publish() method here.

mqtt.publish('home/mytopic', 'hello world')

2.2.5 Logging

To enable logging there exists the flask_mqtt.Mqtt.on_log() decorator. The level variable gives the severity
of the message and will be one of these:

flask_mqtt.MQTT_LOG_INFO 0x01
flask_mqtt.MQTT_LOG_NOTICE 0x02
flask_mqtt.MQTT_LOG_WARNING 0x04
flask_mqtt.MQTT_LOG_ERR 0x08
flask_mqtt.MQTT_LOG_DEBUG 0x10

@mqtt.on_log()
def handle_logging(client, userdata, level, buf):

if level == MQTT_LOG_ERR:
print('Error: {}'.format(buf))

2.2.6 Interact with SocketIO

Flask-MQTT plays nicely with the Flask-SocketIO extension. Flask-SocketIO gives Flask applications access to low
latency bi-directional communications between the clients and the server. So it is ideal for displaying live data, state

2.2. Usage 9

https://flask-socketio.readthedocs.io/en/latest/

Flask-MQTT Documentation, Release 1.1.1

changes or alarms that get in via MQTT. Have a look at the example to see Flask-MQTT and Flask-SocketIO play
together. The example provides a small publish/subscribe client using Flask-SocketIO to insantly show subscribed
messages and publish messages.

"""

A small Test application to show how to use Flask-MQTT.

"""

import eventlet
import json
from flask import Flask, render_template
from flask_mqtt import Mqtt
from flask_socketio import SocketIO
from flask_bootstrap import Bootstrap

eventlet.monkey_patch()

app = Flask(__name__)
app.config['SECRET'] = 'my secret key'
app.config['TEMPLATES_AUTO_RELOAD'] = True
app.config['MQTT_BROKER_URL'] = 'broker.hivemq.com'
app.config['MQTT_BROKER_PORT'] = 1883
app.config['MQTT_USERNAME'] = ''
app.config['MQTT_PASSWORD'] = ''
app.config['MQTT_KEEPALIVE'] = 5
app.config['MQTT_TLS_ENABLED'] = False

Parameters for SSL enabled
app.config['MQTT_BROKER_PORT'] = 8883
app.config['MQTT_TLS_ENABLED'] = True
app.config['MQTT_TLS_INSECURE'] = True
app.config['MQTT_TLS_CA_CERTS'] = 'ca.crt'

mqtt = Mqtt(app)
socketio = SocketIO(app)
bootstrap = Bootstrap(app)

@app.route('/')
def index():

return render_template('index.html')

@socketio.on('publish')
def handle_publish(json_str):

data = json.loads(json_str)
mqtt.publish(data['topic'], data['message'])

@socketio.on('subscribe')
def handle_subscribe(json_str):

data = json.loads(json_str)
mqtt.subscribe(data['topic'])

@socketio.on('unsubscribe_all')
(continues on next page)

10 Chapter 2. Content

Flask-MQTT Documentation, Release 1.1.1

(continued from previous page)

def handle_unsubscribe_all():
mqtt.unsubscribe_all()

@mqtt.on_message()
def handle_mqtt_message(client, userdata, message):

data = dict(
topic=message.topic,
payload=message.payload.decode()

)
socketio.emit('mqtt_message', data=data)

@mqtt.on_log()
def handle_logging(client, userdata, level, buf):

print(level, buf)

if __name__ == '__main__':
socketio.run(app, host='0.0.0.0', port=5000, use_reloader=False, debug=True)

2.3 Testing

For testing use the command setup.py test. You will need a broker like mosquitto running on your localhost,
port 1883 to run the integration tests.

2.4 API Documentation

Flask-MQTT Package.

author Stefan Lehmann <stlm@posteo.de>

license MIT, see license file or https://opensource.org/licenses/MIT

class flask_mqtt.Mqtt(app: flask.app.Flask = None, connect_async: bool = False, mqtt_logging:
bool = False, config_prefix: str = ’MQTT’)

Bases: object

Main Mqtt class.

Parameters

• app – flask application object

• connect_async – if True then connect_aync will be used to connect to MQTT broker

• mqtt_logging – if True then messages from MQTT client will be logged

init_app(app: flask.app.Flask, config_prefix: str = ’MQTT’)→ None
Init the Flask-MQTT addon.

on_connect()→ Callable
Decorator.

Decorator to handle the event when the broker responds to a connection request. Only the last decorated
function will be called.

2.3. Testing 11

mailto:stlm@posteo.de
https://opensource.org/licenses/MIT

Flask-MQTT Documentation, Release 1.1.1

on_disconnect()→ Callable
Decorator.

Decorator to handle the event when client disconnects from broker. Only the last decorated function will
be called.

on_log()→ Callable
Decorate a callback function to handle MQTT logging.

Example Usage:

@mqtt.on_log()
def handle_logging(client, userdata, level, buf):

print(client, userdata, level, buf)

on_message()→ Callable
Decorator.

Decorator to handle all messages that have been subscribed and that are not handled via the on_message
decorator.

Note: Unlike as written in the paho mqtt documentation this callback will not be called if there exists an
topic-specific callback added by the on_topic decorator.

Example Usage::

@mqtt.on_message()
def handle_messages(client, userdata, message):

print('Received message on topic {}: {}'
.format(message.topic, message.payload.decode()))

on_publish()→ Callable
Decorator.

Decorator to handle all messages that have been published by the client.

Example Usage::

@mqtt.on_publish()
def handle_publish(client, userdata, mid):

print('Published message with mid {}.'
.format(mid))

on_subscribe()→ Callable
Decorate a callback function to handle subscritions.

Usage::

@mqtt.on_subscribe()
def handle_subscribe(client, userdata, mid, granted_qos):

print('Subscription id {} granted with qos {}.'
.format(mid, granted_qos))

on_topic(topic: str)→ Callable
Decorator.

Decorator to add a callback function that is called when a certain topic has been published. The callback
function is expected to have the following form: handle_topic(client, userdata, message)

Parameters topic – a string specifying the subscription topic to subscribe to

12 Chapter 2. Content

Flask-MQTT Documentation, Release 1.1.1

The topic still needs to be subscribed via mqtt.subscribe() before the callback function can be used to
handle a certain topic. This way it is possible to subscribe and unsubscribe during runtime.

Example usage::

app = Flask(__name__)
mqtt = Mqtt(app)
mqtt.subscribe('home/mytopic')

@mqtt.on_topic('home/mytopic')
def handle_mytopic(client, userdata, message):

print('Received message on topic {}: {}'
.format(message.topic, message.payload.decode()))

on_unsubscribe()→ Callable
Decorate a callback funtion to handle unsubscribtions.

Usage::

@mqtt.unsubscribe()
def handle_unsubscribe(client, userdata, mid)

print('Unsubscribed from topic (id: {})'
.format(mid)')

publish(topic: str, payload: Optional[bytes] = None, qos: int = 0, retain: bool = False)→ Tuple[int,
int]

Send a message to the broker.

Parameters

• topic – the topic that the message should be published on

• payload – the actual message to send. If not given, or set to None a zero length message
will be used. Passing an int or float will result in the payload being converted to a string
representing that number. If you wish to send a true int/float, use struct.pack() to create
the payload you require.

• qos – the quality of service level to use

• retain – if set to True, the message will be set as the “last known good”/retained mes-
sage for the topic

Returns Returns a tuple (result, mid), where result is MQTT_ERR_SUCCESS to indicate suc-
cess or MQTT_ERR_NO_CONN if the client is not currently connected. mid is the message
ID for the publish request.

subscribe(topic, qos: int = 0)→ Tuple[int, int]
Subscribe to a certain topic.

Parameters

• topic – a string specifying the subscription topic to subscribe to.

• qos – the desired quality of service level for the subscription. Defaults to 0.

Return type (int, int)

Result (result, mid)

A topic is a UTF-8 string, which is used by the broker to filter messages for each connected client. A topic
consists of one or more topic levels. Each topic level is separated by a forward slash (topic level separator).

The function returns a tuple (result, mid), where result is MQTT_ERR_SUCCESS to indicate success or
(MQTT_ERR_NO_CONN, None) if the client is not currently connected. mid is the message ID for the

2.4. API Documentation 13

Flask-MQTT Documentation, Release 1.1.1

subscribe request. The mid value can be used to track the subscribe request by checking against the mid
argument in the on_subscribe() callback if it is defined.

Topic example: myhome/groundfloor/livingroom/temperature

unsubscribe(topic: str)→ Optional[Tuple[int, int]]
Unsubscribe from a single topic.

Parameters topic – a single string that is the subscription topic to unsubscribe from

Return type (int, int)

Result (result, mid)

Returns a tuple (result, mid), where result is MQTT_ERR_SUCCESS to indicate success or
(MQTT_ERR_NO_CONN, None) if the client is not currently connected. mid is the message ID for
the unsubscribe request. The mid value can be used to track the unsubscribe request by checking against
the mid argument in the on_unsubscribe() callback if it is defined.

unsubscribe_all()→ None
Unsubscribe from all topics.

Returns True if all topics are unsubscribed from self.topics, otherwise False

class flask_mqtt.TopicQos(topic, qos)
Bases: tuple

Container for topic + qos

qos
Alias for field number 1

topic
Alias for field number 0

14 Chapter 2. Content

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

15

Flask-MQTT Documentation, Release 1.1.1

16 Chapter 3. Indices and tables

Python Module Index

f
flask_mqtt, 11

17

Flask-MQTT Documentation, Release 1.1.1

18 Python Module Index

Index

F
flask_mqtt (module), 11

I
init_app() (flask_mqtt.Mqtt method), 11

M
Mqtt (class in flask_mqtt), 11

O
on_connect() (flask_mqtt.Mqtt method), 11
on_disconnect() (flask_mqtt.Mqtt method), 11
on_log() (flask_mqtt.Mqtt method), 12
on_message() (flask_mqtt.Mqtt method), 12
on_publish() (flask_mqtt.Mqtt method), 12
on_subscribe() (flask_mqtt.Mqtt method), 12
on_topic() (flask_mqtt.Mqtt method), 12
on_unsubscribe() (flask_mqtt.Mqtt method), 13

P
publish() (flask_mqtt.Mqtt method), 13

Q
qos (flask_mqtt.TopicQos attribute), 14

S
subscribe() (flask_mqtt.Mqtt method), 13

T
topic (flask_mqtt.TopicQos attribute), 14
TopicQos (class in flask_mqtt), 14

U
unsubscribe() (flask_mqtt.Mqtt method), 14
unsubscribe_all() (flask_mqtt.Mqtt method), 14

19

	Limitations
	Multiple workers
	Reloader
	Type annotations

	Content
	Configuration
	Usage
	Testing
	API Documentation

	Indices and tables
	Python Module Index
	Index

